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Stieltjes polynomials are orthogonal polynomials with respect to the sign
changing weight function wP,{-, w), where P,(-.w) is the nth orthogonal polyno-
mial with respect 10 w. Zeros of Stieltjes polynomials are nodes of Gauss-Kronrod
quadrature formulae, which are basic for the most frequently used quadrature
routines with combined practical error estimate. For the ultraspherical weight
function w,{x)=(1—x%*"12, 0. <!, we prove asymptotic representations of
the Stieltjes polynomials and of their first derivative. which hold uniformiy for
xy=cosf, e <H<n—¢ where ee(0, 2,/2) is fixed. Some conclusions are made with
respect to the distribution of the zeros of Stieltjes polynomials, proving an open
problem of Monegato [15. p. 235] and Peherstorfer [23, p. 186]. As a further
application, we prove an asymptotic representation of the weights of Gauss—
Kronrod quadrature formulae with respect to w,, 0 <A<, and we prove the
precise asymptotical value for the variance of Gauss- Kronrod quadrature formulae
in these cases. 1995 Academic Press. Inc

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let #, be the space of polynomials of degree less than or equal to a. Let
the weight function w on [ —1, 1] be such that there exists a sequence of
orthogonal polynomials P,(-, w), n=0,1,2, ., P, (-.w)e#, ie.

ol

J w(x) P, (x, w)x™ dx %
1

=0 0<m<n, 0
#0 m=n.

Regarding wP,(-, w) as a sign-changing weight function, E, (-, w)€Z, .,
is called a Stieltjes polynomial if it satisfies

=0 O<m<n+1,

1 =
J. | w(x) P(x,wyE,  (x,w)x"dx { 20 m—nt L
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Depending on w these equations may not be sufficient for the zeros of
E, . .(-,w) netther to lie in [ —1,1] nor to be real. However, for the
ultraspherical weight function w,, w;(x)=(1—x%* Y2 and Ae[0,2],
Szegd [25] proved that these properties hold for all ne N. Moreover,
Szegd proved that the zeros of E,, , (-, w,) and the zeros of P, (-, w,) inter-
lace, and he gave explicit expressions for E,, (-, w,) in each of the cases
2=0, A=1 respectively A=2. Since Szegds paper, many results and new
questions with respect to the location of the zeros of Stieltjes polynomials
appeared in the literature. For the Legendre weight function w,,,
Monegato [15] conjectured the interlacing property for the zeros of
E, (-, w,,)and E, (-, w,,,), which is the Sticltjes polynomial with respect
to P,_,(-, w,,). Furthermore, Monegato [ 15] conjectured from numerical
results that for the zeros ¢, ., of £, (-, w, ) there holds

4 —3/4
nylp™

é"+27,u,n+l’tcos ﬂzl,...,n"l"l. (3)

In a recent paper, Peherstorfer [ 23] proved the important and very general
result that there hold [23, Theorem 4.1 and Corollary 4.1]
(a) Kk, E, . (x,(1=x*)w)=P, (x,w)+3,x), where

1
10,(x)] < const 05", xe[—1,1],

whenever there exists a m € R such that 0 <m < \/l —x*wix), xe[—1,1],
and /1 —x*w(x)eC[—1,1];
(b) knEn+ l('\" (l -'\‘2) M’.) +27"" lkndn+ | ) :Pn+ l('\" H") +’(§"(_\‘),
where
lim §,(x)=0

uniformly for xe[n,+d,n,—3d], 6>0, —1<p,<n,<1 and d,,,, is
defined in [23, (4.1)], whenever there exists a me R such that w(x)/
J1=x2e L' [-1,1], J1=X*w(x)=m>0 for xe[n,.n,]c[—1,1]
and /1 —x*w(x)e C?*[n,, y,].

In both cases, k,, is defined by
P(x, (1 —x*)w)=k,x"+p(x), PEZ, . (4)

n

Under these general assumptions, Peherstorfer proved several interlacing
properties (cf. [23, Corollary 4.3]) to hold for sufficiently large n.

In the case of the ultraspherical weight function w,, the conditions in
part (a) are satisfied for 4 =0, while the conditions of part (b) are satisfied
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for w, whenever 4> 0. Hence, an asymptotic representation of E, . (-, w;)
is given in part (a) for 1 =1, and could be derived from part (b) for 1> 1
by proving that

2*"77 }dn+l.l1=0(En+l(x* H‘l)) (5)

holds uniformly for xe{[#,+d,4#,—6] <[ —1,1]. However, the question
of an asymptotic representation of Stieltjes polynomials E, . (-, 1) for the
Legendre weight function w,, as well as Monegato’s conjectures still
remain open (cf. Peherstorfer [23, p. 186]).

In this paper, we investigate these problems for w, and 0 <2< 1. As our
first result, we state an asymptotic representation for E, , (-, w,), as well
as for the first derivative E;, (-, w,;), 0<i< 1.

TaeEOREM. Let 0<Ai<, w(x)=(1—x2)* " and let E,, (-, w,) be the
Stielties polynomial with respect to w,. For e<f0<n—e¢, with fixed
€ (0, n/2), we have uniformly

(1) E,. (cosf wy)=n'""g= 1222 *sin' " *0cos{(n+ 1) 0—(4—1)m/2}
+0(nl—/.)’

(ii) E.,, (cosf, w,)=n>""n""222""sin *@sin{(n+2)0—(.—1)nr2}
+ O(n' ).

With respect to Monegato’s conjecture (3), the following corollary is a
direct consequence of the Theorem.

COROLLARY 1. Let 0<<A<), et £€(0,71/2) be fixed, and let n>
1 ws 102, 01> >0, ,,,.20 such that E,, (cosf, , ., w;)=0,
n=12,...n+1 Then there holds uniformly for all e<0,,, , ,, , <n—¢
that

_HF (=22 4o(l)

+2—pun+ 1
” mon n+l

0

(6)

As a second corollary, the following interlacing property can be shown.

COoROLLARY 2. Let 0<A<1, 0<C<4 and let £€(0, =/2) be fixed. Let
nz0 >0 0> >0, 120 such that E, , \(cos 8, ,, . w;}=
0, u=01,2,.,n+1l, and let nz0 ,>6,,> - >0,,20 such that
Ecos@, , w,)=0, u=1,2,.. n There exists a NeN such that for n=z N

and Cn<pu<(1-C)n, <0, 1<, .. <Sm—¢ and e<0,,, ,<

0, ,<n—¢ there hold
(1) 0;1+l.n+]<(),u.n<()u,n+la

(") ()/1+],n<()ﬂ+l.n+l<()

aon:
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2. APPLICATION TO GAUSS-KRONROD QUADRATURE

In addition to the interesting theoretic aspects which Stieltjes polyno-
mials offer per se as a remarkable special case of orthogonal polynomials,
the study of Stieltjes polynomials is motivated by their importance for the
practically used Gauss-Kronrod quadrature formulae. A minimum of
notation is necessary for a further study.

Let p,(x)=x" A quadrature formula Q, with remainder R, of polyno-
mial degree of exactness deg(R,)=s>0 is a real linear functional of the
type (cf Brass [1])

"

QL/1=Y a,flx).  —o0<x < <x, <, (7)

v=1

N . . . :0 /,1:0, ey Sy
Jf, n(.\)f(-\)d-\—Qn[f] + Rn[fl Rn[pﬂ] {9&0 'u=S+ 1.

Q, is called interpolatory if deg{R,)>=n—1. For suitable weight functions
w, the Gaussian quadrature formula Q[ f]1=37_,a¢, f(x¢ ) can be
defined by deg(RY)=2n—1, and it is well known that P, (x¢ ,w)=0,

v=1, .., n If a quadrature formula ‘

n n+1
S lf1=2 AUl )+ 3 B A (8)
v=1 u=1
exists such that deg(R$X |)>3n+1, then Q¥ , is called a Gauss-
Kronrod quadrature formula.

The Gauss—Kronrod quadrature formula s used to compute a second
approximation that is considered to improve upon Q¢, but which involves
only n+ 1 new functional values in addition to the ones used by Q¢. This
economic advantage makes Gauss—Kronrod quadrature formulas a basis
for the most frequently used quadrature routines with practical error
estimate (cf. Piessens et al. [24]).

Due to a well known characterization of Gauss-Kronrod quadrature for-
mulae, the nodes é”i wets #=1,.,n+ 1, 1n (8) have to be the zeros of the
Stieltjes polynomial E,, (-, w) satisfying the orthogonality property (2).
Hence, a Gauss—Kronrod formula is said to exist if all zeros of E, , (-, w)
are real and contained in the interval of integration.

Surveys on Stieltjes polynomials and Gauss—Kronrod quadrature for-
mulae are given by Monegato [15, 16] and by Gautschi [8]. More recent
results have been obtained by Gautschi and Notaris [9, 10, 11], Notaris
[17, 18, 19, 20], Peherstorfer [21, 22, 23] and in [3].
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Monegato [ 13, 147 proved that for the weight function w,, 0 < 2 <1, the
weights 498, v=1,..,n, Bff,ﬂ, p=1,..,n+1 are positive for all ne N,

Using the Theorem from Section 1, we prove an asymptotic representation
of the weights in (8).

COROLLARY 3. Let 0<.i<1, let €€(0,7/2) be fixed, and for the

Gauss-Kronrod quadrature formula (8) let x{ =cos ¢, and IF, &=
cos OF . Then there holds uniformly for all < ¢¢, <m—e that
A% =T 5in® % (1 +0(1)) (9)
Y 2n4 144 o ’
For all e< ), <n—¢ there holds uniformly that
BOK =T in? 0% (1+0(1) (10)
}l,n+l_2n+l+/~\Sln pon+1 o .

Our last result is concerned with the socalled variance of quadrature
formulae. For Q,[ f]=3"_,a,f(x,), the variance

=1

Var(Q,) = . a; (11)

v=1

plays an important réle in the numerical stability of the quadrature
formula Q, (for a recent survey, cf. Forster [5]). In [5], precise values of
lim, . , n Var(QF) for the Gaussian quadrature formulae QF with respect
to many different weight functions, in particular to ultraspherical weight
functions are given. For Gauss—Kronrod formulae, Notaris [19] proved
that there do not exist Gauss-Kronrod formulae such that all weights are
equal for each neN, which would minimize (11). Furthermore, we
conclude from [5, Eq. (4.9) and Eq. (4.16)] that for the Gauss—Kronrod
formula with respect to w,, 0 <A< 1, we have

) ) T*a+172
li',rrllr?f(2n+ 1y var(Qs¥, ) > HT(Z—:;;]/T) (12}
as well as
. ; 4 2a+1/2
limsup (2n+ 1) Var(QSX, ) < —n"/z—(—A—t—/——) (13)

s I+l 3 r2i+1)°

However, the precise value of lim,_ . (2n+ 1) Var(Q9X |) is unknown

until now. The following result can be shown with the help of Corollary 3.

64082 2-9
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COROLLARY 4. Let 0<A<], and let QSX, , be the Gauss—Kronrod

quadrature formula with respect to w,. Then

1224172

nliﬂn‘l‘(2n+l)Var( g’;,’il)_n i (14)
3. PrOOFS

Let 0 € A< 1. In the sequel, Stieltjes polynomials will be normalized by

2n+1
En+l<xw “vi)= xn+‘+p‘x)w pe‘%l’ (15)
where
In+22)
= | 16
T ﬁ]"(n+/l+1) (16)

The orthogonal polynomials with respect to w, are the ultraspherical
polynomials P!? (cf. Szegd [26, §4.7]).

Proof of the Theorem. (i) Note that for 0 <8 < r there hold (cf. Szego
(25D

E, . (cos b, w0)=~2\/"—_[cos(n+1)0—cos(n—1)0], (17)
n

2
E, (cos8,w)=—=cos(n+1)86. (18)

N

Hence we only have to consider 0 <1 < 1.
Let Q'* be the ultraspherical function of the second kind, defined by

PN B A ¢ N 1 P
_p2yA— 12 oAy = o _2va—t128a
=y 0 = ry | 1=y 19)

for y¢[—1,1], i> —1/2. For —l<x<l, QY is defined by [26,
(4.62.9)], or, equivalently, by a Cauchy principal value integral,

. 1 24 o _1. P
WA 12 b - _ 4 A-12"
(1=x) 12 () =3 = f u-pporla o

i+ 1/2)
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Using the method described by Szegé [ 26, §8.71(5)], it can be proved that

(1 =xH* "2 0(x)=n*""2"22* " 'sin* ' Ocos{(n+ i) 0~ (A—1) n/2}
+0(n*~?) (21)
as well as

L\I (l _XZ)}.A» 12 QLM(X)}

dx
= —n'n'?24 Tsin* 2 Osin{(n+A4)0— (A~ 1) r2} + O(n*~ ") (22)

uniformly for x =cos 0, e <0< —¢, ¢ fixed.
Szegd [25] proved that the coefficients of the Chebyshev polynomial
representation of E, , (-, w;),

2 Lin+ l’),“‘ZJ
En+1('!wi)_‘ Z aan+l42v (23)

}”1 v=0

(the prime indicates that the last term should be halved if » is odd), can
be obtained from the recurrence formula

%=1, Yo fi.=0, vzl (24)
=0

where «, =a!™* depends on n and 1 also, since

fo=sri=1 fi=fro=(1-5 1ot f L vzl (25)
v n+iA+v

are the coefficients in the expansion

im I(24)

in*-1p (&) 0 i
sin { (Q,, (cos 0) + 2 I(A+172)

P("l)(cos 0)) — y” Z fvei1n+ 14208
v=0
(26)

(cf Szegd [25, p. 533]) of the ultraspherical polynomials and functions of
the second kind. The latter series converges uniformly for e<f<n—¢,
¢ fixed.

Let m=| (n+ 1)/2_]. Starting as in the proof of Laplaces formula in [ 26,
p. 205] we write

2 m' .
E,,+|(COS ()’ wx)z_m{el1n+llﬂ Z ave\va{}}’ ng)gﬂ (27)
;Y

v=0

]
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Szegd [ 25, p. 509] proved
o <Ay <oy < oo <O 0<Zav<l. (28)
v=0

Hence, we have (Y7 a,e 2™ <Y | |x,] <2, and we can use

5

3

il rd

=4

4 —_2iv0 2w * — 24

®,e 2l _ Z a,e 2ivt) Z a,e 2:\(1’ (29)
y=20 v=20 v=snr+1

where the asterisk indicates that la,e > should be added if n is odd.
Regarding (24) as the coefficients of the Cauchy product of two power
series, and using (26) we obtain

o
(’i("+l)” Z ave—zivﬂ
v=0

o —1
=(Z j“’e~iln+l+2v)1)>
v=0

s ; in T(24)
—u 1-2ip (4) m P4 )
¥, Sin ( Y(cos ) + T {(cos @)
(A 2 [ 7124 (2 r>4l
x([Q" (cos 8)] +[2F(;t+ ]/2)Pn (cos ) . (30)

Since Q'* and P!/ are linearly independent solutions of the same second
order differential equation (cf. [26, p. 78]), their zeros interlace and the
denominator in {30) cannot vanish. Using (21) as well as

F(22)

i (i)
ST 1 cost)

=n'"17"2*"'sin * @ cos{(n+ 1) 0 —in/2} + O(n* %) (31)
(cf. Szegd [26, (8.21.10)]) for e <@ <7 —& we obtain that

n T(24) 2

(A) 2 - (A)
[QM(cos 8)] +[2F()~+ 1/2)Pn (cos 8)

=n? 2% " 25in " 0+ O(n*?) (32)
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converges uniformly for ¢ < 6 < n — ¢ Therefore part (i) of the Theorem will
follow with the help of (21) and (27) if

e+ 110 Z* aye*?-iv(’:O(]). (33)

v=mni+1
In view of (28), we can estimate

s

* — 20
z o, v

v=ni+1

< - Z OL,,,S z &y (34)

Using (24), we obtain that for k >0
(g toy+ -+ ) fo+ /it +fi)=1+ Ry, (35)
where R, <0, hence
g+ oy + o Fa, <(fotSi+ o+ L) (36)

Recalling the definition of m, we now show that fy+ fi+ - +/,, is
unbounded as #n increases. An explicit representation for f, and 0 < i <1
can easily be calculated from (25),

1 v+ 1—-A)Tn+i+1) INn+v+1)

f":F(l;/”.) I'iv+1) In+1) In4+v+2l+1) (37)
LEMMa (Laforgia [12]). Let x,ue R, x> 1. Then
2 a1 =1
(1) <_\'+§,u> <1ﬂ%£/11—))<<x+%‘> , O<u<li;
B ) u pH—1 r(-\+[1) /1 ] i1 '
(11} <,\+5> <m<<x+§+m s l<;l<2,
Application of the Lemma with x=n, u =1+ 4 yields
I'n+1+4) 1+;t>i
—— . 8
sl ><n+ > (38)
Application of the Lemma with x=n+v, g =1+ 4 yields
In+v+2+1) 1+4 1)2 \
TFmavsl) <<n+1+——2 +10 ) (39)
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Hence, for 0 <4 <1 and v<m we obtain

N 1+4 .
LI
pons_ L Trrl=2) 2
YOIl =2y I(v+1) +"+1+A+L
" 210
1+4
2y 4
S 1 v+1-2) 2 _ g (40)
Il1—4)y Iv+1) 3‘+1+A+_L
2 10
Now g'* is independent of », and
gl =0("" (41)
leads to the conclusion.
Proof of Corollary 1 and Corollary 2. Setting
6! SRR 23 1 (42)

n+2-puon+1 n+/l

by part (i) of the Theorem it follows that for every 4 >0 and sufficiently
large n there is a zero of £, (-, w,) in (cos 0312 . cos 0% )

which proves Corollary 1. We now set

HHA=D240,,,, S
nA2—pn+1 ﬂ+}, Tn= n+2*ll,n+l+~m—

0 n. (43)

For the inequalities (i) and (ii) of Corollary 2 we shall prove that the
S-terms in (43) are less than half the differences of the O-terms for
sufficiently large n. After some elementary calculations, we obtain the
sufficient condition

max{ '6/14— I‘nlﬁ '6/z+ l,n+l|1 lé;z.nla ’6}I.H+ 1 l}

o (u—=14+22 n—pu+2/2
. 44
<mm{ Mm+2) ° 2n+2x (44)

For Cn<u < (n+1)/2], we have

pt(A=2)2 C -
2 2T o0 @5
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while for [ (n+1)/2 J]<u <(1—C)n we have

n—p+i2 C

~ —1
mi2i 2 TOn ) (46)
We conclude from Corollary 1 that
max{ Ié,u +1Ln I’ |5;1 +1,n+1 Iﬂ |6/4.n |’ I(S,u, n+1 |} = 0( 1 )s (47)

which leads to the conclusion.

Proof of the Theorem. (i1} Let m=|(rn+1)/2] Setting again
x=cos ), 0 <<z, we obtain from (27}, (29) and (30) that

E,, ((x,w5)

(l_xl)l—l,f’z (/1)(—‘.)

d n
=2— n  I(24) 2
dx 1 — x2)4- 172 9y )12 IV B 1 3 1A
ey gpe e -y 22 |
2 d v X v
. —q An+1)0 * - 2ivt} . 48
. sinﬁdﬂ}t{e (e e } (48)

It can easily be shown with the help of (31} and

a P(x)=2AP "+ (x) (49)
dx

(cf. [26, (4.7.17)]), that

d (24)

a _ 2a—in PR
dx{(l S Tar i L (")}

=n*z"?2* " sin* "2 Osin{(n+ A) 0 —Ain/2} + O(n* "), (50)
Using (21), (22), (31) and (50), it follows that

(] __XZ)/"»f 1,2 Q‘;,A)(’\‘)
[ =y 12 Qi) (1 =ty 125

5

i
dx

© (A
2TG+12) (")]J

=n"fr 1222 4sin T Osin{(n+2) 0 — (A~ 1)n/2} + O’ ~%).  (51)
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Therefore, part (ii) of the Theorem follows if we prove that there holds
uniformly for ¢ <0< —¢, ¢ fixed, that

A

m{ei(n+l)” Z* ave’zwa}:o(l), (52)

v=m+1

i
do

Let n be odd; an analogous proof holds for even n. We have

’(;%ER {ei(n+l)0 Z* ave~2iv()}: -2 Z vam+vsin 2v6. (53)

v=nr+1 v=1

Using partial summation we obtain

va,, ., sin 2vf
)

N aak:

v

K—1 v
= lim [ Y (v, — (v, ) Y sin2uf

K=o v=1 =1
K
+ K, x Y sin 2/1()} (54)
n=1
Now
o cos()—cos(2v+1)0) 1
2uf| = - < — 55
,,Z;l S ‘ 2sin d sin ¢ (>>)
is bounded for e <0< n—¢ and all ve N, and
hm IKam+KI=O (56)
K- x
holds since >, a,, ., is convergent. Furthermore,
K-1 K-1
Z lvan|+v—("+l)am+v+\l< Z v[am+v_am+v+\(
v=1 v=1
K-1
+ Z lam+v+l ’ (57)
v=1
where
K—1 o
lim Z [, v i | = Z €y 41 | < L. (58)

K_'D(v=l v=1
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For the first term in the right side of (57), it follows from (28) that
K—1

lim Z v lanl+l'_—anl+v+} I

K— x
v=1]

= Ilm < Z am+| 1) m+l\'>
v=1

K— x
K-1
- lim Y «,,,<1, (59)
K = x =1

and the proof is complete.

Proof of Corollary 3. For the proof of (9) and (10) note that

— C o 2K r K
7n+l Qn R ,[p’n] dVd \1 ny e T n’n"‘l "1 ’5n+l.n+])‘ l60)

where dvd(y,, ... y)[f1=3%_, b, f(y,) is the divided difference defined
by

0 v=0,1,.., k=2,

dvd(y,, ... y)lp. 1= ek —1

(61)
which leads to

.
b=T1] (y.—»)" " (62)

Therefore, the weights of Gauss-Kronrod quadrature formulae can be
written as

Af""~ 5"”+ 22;21\/7_[ *
‘ F( )P(M’( \;1)E11+1( v.n® H';t)

B(K 2'2‘2/1\/7E :1

;zn+1~ * 14

F( )P(A)(ép n+l) E:|+l(f;,‘<.n+l’ M'i)

v=1, ., n, (63)

R (64)

It is known (cf eg Gatteschi [7] for a stronger result) that for
x¢, =cos ¢, we have uniformly for e < ¢, <nm—e, ¢ fixed, that

— 1)
:\ 1)/2 +o(1) (65)
n+2

&
n+1—wn
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and (cf. [26, §15.31)

G T 24 4G
av,n_n_+_xSIn ¢; "(I-f-()( )) (66)

Furthermore, it follows from (31) and (49) that

I'(A+1/2) o~ .
_ n—v (A ¢ — / A 10‘22/. 7 —1 G
(=1) PA(xE ) _—_F(Z/l) n'n sin #;(1+0o(1))  (67)

for x{, =cos ¢} ,, e<¢y,<m—e Using now part (i) of the Theorem
and (65) for an asymptotic representation of E, (x f;,,, w;), (31) and
Corollary 1 for an asymptotic representation of P\/(&¥ wns1) as well as
part (ii) of the Theorem and Corollary 1 for an asymptotic representation

of £, (&X, . w,), we obtain from (63) respectively (64) that
. n P .
A(;lﬁz__— 124 4O 1 , 68
von 2n+1+25m ¢ (1 +o(1)) (68)
B¢k —»i——sm”1 0f . (1+o0(1)) (69)
o+ 2’1+1+A JURE

hold uniformly for e <¢$,, <n—¢and e<O0f,,  <n—e ¢ fixed

Proof of Corollary 4. Let £€(0, l) be fixed and let I,=[ —1, —1+¢]
Ull—e 1] let xi7, =cos ¢y, and &, =cos OF Then

v, n won+ 1

Vdr( ”n+l)_ Z (Afli) Z (B;I n+l)

X, n¢ £ \y w1 ¥ 1
K GK
+ Z A‘) Z (B‘,,,H). (70)
el, »,,,,,Hel,

We deduce from Corollary 3 that there hold uniformly

oA+ Y (B

&
Xt s,, "+|¢’r

e eud (PP LI ROl
2n+l+)(w¢,

Y OB -[EK, T )*)mom)

5; n+1¢’!

mQ2ll+l[f](l+0(l)), (71)
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where

0 xel,,
f(");{(l—xz)*‘~ x¢1,. (72)

Since f is bounded and Riemann integrable, it follows from the positivity
of O¢¥, | and from deg(Q¢¥, |) = 3n+ 1 that (c.f. e.g. Davis and Rabinowitz
[2, pp. 129/1307)

hm Q"H+ l[f] = ji;r ) \1’2(,\')(1 —-\'2))‘ d,\'

noes x

12+ 1/2) 1)
= , 3
R = e SR (73)
where
—1+ )
l()‘.'q"l<2_[ (1 —=x2) " dx=2n—2arccos(—1 +¢). (74)
Let now m = (deg(Q%5X, ,) + 1)/2, and let Q¢ be the Gdussian formula with

respect to w,. Let Ne N be defined by —1+¢&e(x} N‘, o X5 ] Let
for notational convenience, x$%¥ ., ., = é(",,ﬂ, asf | 5., =BY
V= 1 o Rt l \glvkux+l _’\'f",u’ (Igl;f2’1+l —A(

Forster [4, Theorem 2.17, it follows that

vor+ 1
v=1, .., n Using a result of

. n?

2
3 wkarey(ox e
’ <

- ! G
N6 p=0 N <A

N
<Z Z (asl:m_‘_a:;-#l.m)z' (75)

From a result of Forster and Petras [ 6, Theorem 1] we obtain that this is
bounded by

8 Y (al, )’ (76)

N+
Y af, sin® 0¢

v,om?
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where x¢ =cos 1 . Using the same argument as above, we obtain that

. - . 32
limsup (2n+1) ) (aﬁj’_‘,_,,ﬂ)*s—S—T—t(n—arccos(—1+1;)). (78)
n -+ L GK

N, € I

Since the arccos function is continuous, it follows that the right hand sides
of (74) and (78) can be made arbitrarily small by suitable choice of ¢,
which leads to the result.
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