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Stieltjes polynomials are orthogonal polynomials with respect to the sign
changing weight function )l'P,,(" )1'). where P,,(" \I') is the 11th orthogonal polyno­
mial with respect to II'. Zeros of Stieltjes polynomials are nodes of Gauss-Kronrod
quadrature formulae, which are basic for the most frequently used quadrature
routines with combined practical error estimate. For the ultraspherical weight
function W,(x)=(l-x'r- 12,0";;.,,; l. we prove asymptotic representations of
the Stieltjes polynomials and of their first derivative. which hold uniformly for
x = cos O. £,,; B,,; Jr - E. where E E (0. ni2) is fixed. Some conclusions are made with
respect to the distribution of the zeros of Stieltjes polynomials, proving an open
problem of Monegato [15. p. 235] and Peherstorfer [23. p. 186]. As a further
application, we prove an asymptotic representation of the weights of Gauss­
Kronrod quadrature formulae with respect to \I';. 0,,;; A,,;; 1. and we prove the
precise asymptotical value for the variance of Gauss Kronrod quadrature formulae
in these cases. (" J995 Academic Prrs.'i. Inc

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let .0/" be the space of polynomials of degree less than or equal to n. Let
the weight function II' on [ - I, 1] be such that there exists a sequence of
orthogonal polynomials P Il(·, 11'),11 = 0, 1,2, ..., PII (·, 11') E .0/,,, i.e .

• 1 {-Oj w( x) P (x 11') \,111 (h .-
_I • II . , • . -/=0

0::::; m < 11,

m =11.
( 1)

Regarding wPIl ( " IV) as a sign-changing weight function, Ell + I ( " 11') E ,0/" + I

is called a StieItjes polynomial if it satisfies

fII w(x) PIl(x, 11') Ell + I(X, 11') x'" dx {:~

287

O::::;m <11 + I,

m=I1+1.
(2)
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Depending on II' these equations may not be sufficient for the zeros of
E" + I ( " IV) neither to lie in [- I, I] nor to be real. However, for the
ultraspherical weight function II'A' It·A(X) = (\ - x 2)'! 1/2 and AE [0, 2],
Szego [25] proved that these properties hold for all nE N. Moreover,
Szego proved that the zeros of E,,+ 1(', II',!) and the zeros of P,,(', wJ inter­
lace, and he gave explicit expressions for E,,+ 1(', II',!) in each of the cases
), = 0, ), = I respectively A. = 2. Since Szegos paper, many results and new
questions with respect to the location of the zeros of Stieltjes polynomials
appeared in the literature. For the Legendre weight function 11'1/2'

Monegato [15] conjectured the interlacing property for the zeros of
E,,+ 1(·,11'1/2) and E,,(', 11"/2), which is the Stieltjes polynomial with respect
to P" -1(',11'1/2)' Furthermore, Monegato [15] conjectured from numerical
results that for the zeros ~!l." + 1 of E" + I( " 11'1/2) there holds

/1- 3/4
~ " + 2 - !i. ,,+ , ~ cos n + 1/2 ][, /1 = I, ..., n + I. (3)

In a recent paper, Peherstorfer [23] proved the important and very general
result that there hold [23, Theorem 4.1 and Corollary 4.1]

(a) k"En+ I(X, (I - x 2
) 11') = Pn+ dX, w) + (),,(x), where

_ log n
Ibn(x)1 ~ const -~,

n
xE[-l,I],

whenever there exists a In E IR such that 0< In ~ ~I - x 2 w(x), X E [ -1, I],
and )1 -x 2 w(x) E C 2

[ -I, I];

(b) k"E,,+ ,(x, (I _x2
) 11') + 2 -n Ik"dn+ I.n = P n+ I(X, w) + In(x),

where

lim J,,(x)=O
!l---+CK.

uniformly for x E [til +0, tl2 - 0], 0> 0, -I ~ til < tl2 ~ I and dll + 1.1l is
defined in [23, (4.1)], whenever there exists a mE IR such that w(x)/
j I - x 2

ELI [ - I, I], j 1 - x 2 w( x) ~ m > ° for x E [If I' If2] c [ - I, I]
and jl-X2 IV(X)EC 2[1f1,1f2].

In both cases, k" is defined by

(4 )

Under these general assumptions, Peherstorfer proved several interlacing
properties (cf. [23, Corollary 4.3]) to hold for sufficiently large n.

In the case of the ultraspherical weight function W,!, the conditions in
part (a) are satisfied for A= 0, while the conditions of part (b) are satisfied
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for Wi, whenever A> O. Hence, an asymptotic representation of E" + 1(', wiJ
is given in part (a) for A= I, and could be derived from part (b) for A> I
by proving that

(5)

holds uniformly for x E [171 + J, 172 - J] c [ -I, I]. However, the question
of an asymptotic representation of Stieltjes polynomials E" + 1( ., I ) for the
Legendre weight function IV 1/2 as well as Monegato's conjectures still
remain open (cf. Peherstorfer [23, p. 186]).

In this paper, we investigate these problems for It'i. and 0 ~ ;, ~ I. As our
first result, we state an asymptotic representation for E" + I( " w;), as well
as for the first derivative E;, + I ( ., W A), 0 ~ }, ~ I.

THEOREM. Let 0 ~;, ~ I, wjx) = (I - x 2 )A-1/2 and let E" + 1(', wJ be the
Stieltjes polynomial with respect to wA • For e ~ 0 ~ n - e, lvith fixed
eE (0, nI2), we have uniformly

(i) En + I( cosO, wJ =n l An -1/222
- Asin 1- AO cos{ (n + I,) 0- (). - I) n12}

+ o(nl- i.),

(ii) E;, + I (cos 0, wiJ = n2- An -1/22 2 - i sin AO sin{(n + ;,) 0 - (;, - I) n/2}
+ O(nl- A).

With respect to Monegato's conjecture (3), the following corollary is a
direct consequence of the Theorem.

COROLLARY 1. Let 0 ~ A~ 1, let e E (0, n12) be fixed, and let n ~
(J1,1l+1 >fJ2. fJ + 1 > .,. >OfJ+l.fJ+I~O such that EfJ+l(cos(},(.fJ+"wi.)=O,

J1 = 1, 2, ... , n + 1. Then there holds uniformly for all e ~ OfJ + 2 _ 1'." + I ~ n - f:

that

(6)

As a second corollary, the following interlacing property can be shown.

COROLLARY 2. Let 0 ~ A~ 1, 0 < C ~ ~ and let I; E (0, n12) be fixed. Let
n ~ fJl." + I > (/2." + 1 > .,. > On + I," + I ~ 0 such that En + I(COS 0"." + I' w;) =
0, /1=1,2, ...,n+l, and let n~(JI.">{/2,"> ... >(I".fJ~O such that
Ell(cos 01'.'" wA) = 0, /1 = 1,2, ... , n. There exists a N EN such that for n ~ N
and Cn~/1~(I-C)n, 1;~(},I+I,"+I<(I".fJ+l~n-f: and 1;~0I'+l.fJ<

(}", " ~ n - e there hold

(i) (/,(+I,fJ+1 <O",,,<0I',fJ+l,

(ii) (I" + I." < (II' + I." + I < 01'. II'
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2. ApPLICATION TO GAuss-KRONROD QUADRATURE

In addition to the interesting theoretic aspects which Stieltjes polyno­
mials ofTer per se as a remarkable special case of orthogonal polynomials,
the study of Stieltjes polynomials is motivated by their importance for the
practically used Gauss-Kronrod quadrature formulae. A minimum of
notation is necessary for a further study.

Let p)x) = xl'. A quadrature formula Q" with remainder R" of polyno­
mial degree of exactness deg( R,,) = .I' ~ 0 is a real linear functional of the
type (cf. Brass [I])

(7)
v=1

r w(x) fix) dx = Q,,[f] + R,,[f],
-I

JL = 0, ..., .1',

JL=s+l.

QIl is called interpolatory if deg(R,,) ~ n -I. For suitable weight functions
IV, the Gaussian quadrature formula Q;,i[fJ = L:~= 1 a~~J(x~~,,) can be
defined by deg(R:)=2n-l, and it is well known that PI1(x~", w)=O,
l' = 1, ... , n. If a quadrature formula

n+l

QGK [j'] _ " AGKj'( G) "BGK f():K )
2n + I - ~ 1'. II X V, 11 + ~ fl. JI + 1 ":. f.1. II + J .

v=l p=J

(8)

exists such that deg(R~;"+ 1) ~ 3n + I, then Q~"K+ I IS called a Gauss­
Kronrod quadrature formula.

The Gauss-Kronrod quadrature formula is used to compute a second
approximation that is considered to improve upon Q:, but which involves
only n + I new functional values in addition to the ones used by Q;;. This
economic advantage makes Gauss-Kronrod quadrature formulas a basis
for the most frequently used quadrature routines with practical error
estimate (c£ Piessens et al. [24 J).

Due to a well known characterization of Gauss-Kronrod quadrature for­
mulae, the nodes ~:" + l' JL = 1, ... , n + I, in (8) have to be the zeros of the
Stieltjes polynomial E,,+ 1(', w) satisfying the orthogonality property (2).
Hence, a Gauss-Kronrod formula is said to exist if all zeros of E" + 1( " w)

are real and contained in the interval of integration.
Surveys on Stieltjes polynomials and Gauss-Kronrod quadrature for­

mulae are given by Monegato [15, 16] and by Gautschi [8]. More recent
results have been obtained by Gautschi and Notaris [9, 10, I I], Notaris
[17,18,19, 20J, Peherstorfer [21, 22, 23J and in [3].
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Monegato [13, 14] proved that for the weight function W A, O:().:( 1, the
weights A ~~~, v = 1, ..., n, B~.~, + l' ,u = 1, ... , n + 1 are positive for all n EN.
Using the Theorem from Section 1, we prove an asymptotic representation
of the weights in (8).

COROLLARY 3. Let 0:(;. ~ 1, let e E (0, n12) be fixed, and for the
Gauss~Kronrod quadrature formula (8) let x~" = cos I/J;:" and (:." + i =
cos 0: n + I' Then there holds un({ormly for all e ~ I/J ~ /l ~ n - e that

GK n . 2A GA, ,,= , SIll ¢J, ,,(1 +0(1)).
. 2n + 1+ Ie .

For all e ~ 0:" + I ~ n - F. there holds uniformly that

GK n. v K
B1l "+i=2 1 ,SIn 0",,+1(1+0(1)).. n+ +,ot r'

(9)

( 10)

Our last result is concerned with the socalled variance of quadrature
formulae. For Q,,[f] = :I:~~ I aJ{x,), the variance

Var( Q,,) = I a~
v=l

(11 )

plays an important role in the numerical stability of the quadrature
formula Q" (for a recent survey, cf. Forster [5]). In [5], precise values of
lim

ll
__ x n Var( Q;;) for the Gaussian quadrature formulae Q~ with respect

to many different weight functions, in particular to ultraspherical weight
functions are given. For Gauss-Kronrod formulae, Notaris [19J proved
that there do not exist Gauss~Kronrod formulae such that all weights are
equal for each n E N, which would minimize (11). Furthermore, we
conclude from [5, Eq. (4.9) and Eq. (4.16)] that for the Gauss-Kronrod
formula with respect to w", °~ }. ~ 1, we have

as well as

lim inf(2n + 1) Var( Q~~+ 1) >
n --- '-:t;

(12)

lim sup (2n + I) Var( Q~~+ 1) < ~n3/2T(2A.+ 1/2).
3 T(2Jc + 1)

(13 )

However, the precise value of lim" ~ x (2n + I) Var( Q~~+ 1) is unknown
until now. The following result can be shown with the help of Corollary 3.

640'822-9
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COROLLARY 4. Let O::s; A::S; 1, and let Q~nK+ I be the Gauss-Kronrod
quadrature formula with respect to I~·". Then

. . F(2A. + 1/2)
hm (2n+1)Var(QGK )=n'/2 .

" ~x 2" + , F( 2A + 1)

3. PROOFS

(14)

Let 0 ::s; A::s; 1. In the sequel, Stieltjes polynomials will be normalized by

where

2"+1
E,,+,(x, II',,)=--X"+\ +p(X),

Yn

r.:.. F(n+2A.)
Yn = V n T(n + A+ 1)'

P EPfJ", (15 )

(16)

The orthogonal polynomials with respect to w" are the ultraspherical
polynomials p:,,,j (cf. Szego [26, §4.7]).

Proof of the Theorem. (i) Note that for o::S; e::s; n there hold (cf. Szego
[25] )

2n
E n + I(COS e, 11'0) = fie [cos(n + 1) e-cos(n -1) e],

2
En + \(cos e, w \ ) = fie cos( n + 1) e.

(17 )

(18)

Hence we only have to consider 0 < A< 1.
Let Q~") be the ultraspherical function of the second kind, defined by

for y H -1, 1], t. > - 1/2. For -I < x < 1, Q~"\) is defined by [26,
(4.62.9)], or, equivalently, by a Cauchy principal value integral,
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Using the method described by Szego [26, §8. 71 (5)], it can be proved that

(I _x 2 ).< -li2 Q~).)(x) = n).-ln l / 22).-1 sin).--I 0 cos{ (n + Je) 0 - (A - I) n12}

+ O(n).- 2) (21)

as well as

uniformly for x = cos 0, e ~ 0 ~ n - e, e fixed.
Szego [25] proved that the coefficients of the Chebyshev polynomial

representation of E,,+J!', w..l,

2 Li" + I)/2J

E"+I(" wJ=- L (Xv T,,+1_2v
y" v ~ 0

(23)

(the prime indicates that the last term should be halved if n is odd), can
be obtained from the recurrence formula

(Xo = I, I (X"fv _I' = 0,
/(=0

v~ I, (24)

where (Xv = (X~." . .!I depends on n and A also, since

f l -) (;.)( A)fv = v"''-\ = 1-; I - n + Je +}I fv -- I , v~ I, (25)

are the coefficients in the expansion

• 7' (- in T( 2), ) ) x . 7 ,sm-I.-10 QI/·)(cosO)+- • pl.!I(COSO) =1' 'j,e'III+I+_\)1I
II 2 T(;. + I/2 ) n I II v~0 \'

(26)

(cf Szego [25, p. 533]) of the ultraspherical polynomials and functions of
the second kind. The latter series converges uniformly for e ~ (J ~ n - e,

E: fixed.
Let m = l(n + 1)/2j. Starting as in the proof of Laplaces formula in [26,

p. 205] we write

2 {. m }E (cos(J w-)=-. 9t e'ln+lliI,' (X e- 2ivll
n+1 'It ~ V ,

I'll \.'=0

O~()~n. (27)
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o~ L IX v < 1.
1-'=0

(28)

Hence, we have IL~~ 0 oc,e-
2ivll l~ L~.{~ 0 loc v I~ 2, and we can use

In A '£

~' -2ivO _ '" --2i'o'O _ ~* -2ivO
L, IXve - L... I'Xve L... I'Xve ,
~,=o ~,=o V=ln + 1

(29)

where the asterisk indicates that ~I'Xme -2imll should be added if n is odd.
Regarding (24) as the coefficients of the Cauchy product of two power
series, and using (26) we obtain

'x'
e i("+ 1)11 I ocve-2iVIl

'0'=0

. I 2 . ( . ) in r( 2,), ) , )
=}' sm - "f} QI"(cosf})+- pl")(cosf})

" " 2 r(,). + 1/2) "

( I
n T( 2},) 12

) - Ix [QIAJ(cosf})]2+ - . pW(cosO)
" 2 T( A. + 1/2 ) "

(30)

Since Q~A) and P~,AI are linearly independent solutions of the same second
order differential equation (cf. [26, p. 78]), their zeros interlace and the
denominator in (30) cannot vanish. Using (21) as well as

~ T(2)") PIA)cosf}
2 TO + 1/2) ,,( )

(cf. Szego [26, (8.21.10)]) for f: ~ 0 ~ n - G we obtain that

I
n r( 2). ) 12

[Q (A)(COSO)]2+ - pIA)(COS(J)
" 2 rp. + 1/2) "

(32)
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converges uniformly for £ ,,;; (J ,,;; n - £. Therefore part (i) of the Theorem will
follow with the help of (21 ) and (27) if

x

ei
(ll+ 1111 I* :X,.e -2ivll = o( 1).

v=m+ 1

In view of (28), we can estimate

I
£* :Xve-2iVIII < - i :x",";; I :Xv'

\.! = n, + 1 v = nl + I v = 0

Using (24), we obtain that for k > 0

(33)

(34)

where R k < 0, hence

(36)

Recalling the definition of m, we now show that 10 + 11 + ... + I", is
unbounded as n increases. An explicit representation for Iv and 0 < Ie < 1
can easily be calculated from (25),

1 F(v+l-A)F(n+J.+l) F(n+v+l)
f, - (37)
v-F(l-).) F(v+l) F(n+l) F(n+v+).+I)

LEMMA (Laforgia [12]). Let x, Ii E fR, x ~ 1. Then

(
. 2 )11

- 1 F( X+ Ii) (. 1i)11 -1
(i) x+-Ii < < .\+- ,

3 F(x+l) 2
0<!1<1;

(ii) 1<Ii < 2;

Application of the Lemma with x = n, Ii = 1 + A. yields

F(n + 1+ Je) ( 1+ A)!'
~----> n+-- .

F(n+l) 2

Application of the Lemma with x = n + 1', Ii = 1 + A yields

T(n+v+/.+1) ( l+Je I)).
------< n+v+--+- .

F(n+v+l) 2 10

(38)

(39)
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Hence, for 0 < A< 1 and v ~ m we obtain

(

1+ A )..ln+--
'(..l) 1 r(v+ 1-},) 2

fv > T(l-},) T(v+1) I+A I
n+I'+--+~

2 10

(

1+A )2v+~·-
I T(v+I-).) 2

~ TO - ). ) T( I' + I ) I + A I
3v+--+~

2 10

Now g~..l) is independent of n, and

leads to the conclusion.

Proof of Corollary I and Corollary 2. Setting

()I H) ._/1 + (A - 2)/2 ± J
11+2-/1.11+1'- n+A lr,

g~l. (40)

(41 )

(42)

by part (i) of the Theorem it follows that for every b > 0 and sufficiently
I h · , f E ( " III +6) III -6) )arge n t ere IS a zero 0 II + 1 " 11;.) III (cos [, II + 2 -- 1'. II + I ' cos {, II + 2 -/1. II + 1 '

which proves Corollary 1. We now set

(} _,u+(A-2)/2+<5I'.II+~ _(j <51'.11+1 (43)
11+2-1'.11+1- +' lr- 11+2-//.,,+1+ +' n.

fl;-. nl.

For the inequalities (i) and (ii) of Corollary 2 we shall pro~e that the
J-terms in (43) are less than half the differences of the O-terms for
sufficiently large n. After some elementary calculations, we obtain the
sufficient condition

. {/1 - I + Al2 n - /1 + ),/2}<mill , .
2n +2A 2n +2A

For Cn ~/1 ~ Un + 1)/2J, we have

/1 + (A - 2 )/2 ~+ O( n - 1 )

2n + 2A > 2 '

(44)

(45)
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while for Un + I )/2J <IJ ~ (I - C) n we have

n - IJ + ;';2 C _ 1

2 2
' >-2+0(n ).

n+ A

We conclude from Corollary I that

297

(46)

which leads to the conclusion.

Proof of the Theorem, (ii) Let m = L(n + I )/2j. Setting again
x = cos 0, 0 < {} < n, we obtain from (27), (29) and (30) that

__2_._.i 9t {eiln+lll! f* otve-2iVO}.
}'" sm 0 dO v =m + 1

It can easily be shown with the help of (31) and

.i p O )( x') = 2AP l ' + II( x)
d

,,~ 11-- I .
X

(cf. [26, (4.7.17)]), that

(48)

(49)

~{(l_X2)A-I/2~ r(U) P(A/(X)}
dx 2 rp, + 1/2) n

= n;'n l / 22A -
1 sin A- 20 sin{ (n + A) 0 - hz-/2} + 0(n A -

1
). (50)

Using (21), (22), (31) and (50), it follows that

d{ (1_X2),l-1/2Q~)(X) }

2 dx [(I_x2),l-1/2QOI(x)]2+r(I_.x2); 1/2~ r(2A) [PI;,I(x)]12
" l 2 r( A+ I/2)" J

= n2 -,In- I /222-,l sin~,l 0 sin{(n + ;.) 0 - p, - 1) n/2} + O(n l -;), (51)
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Therefore, part (ii) of the Theorem follows if we prove that there holds
uniformly for [; ~ 0 ~ n - f., [; fixed, that

Let n be odd; an analogous proof holds for even n. We have

d { .. T } x-91 .e/(lI+lliI ,,* iX e- 2ivil = -2 "ViX sin 2vO.dO 1.., v L. '" + v
v=m+l v=1

Using partial summation we obtain

'x

L ViX", + v sin 2vO
V= 1

= J~mx l~~\1 (ViX"'+I-(V+ l)iX",+v+l) I/~l sin 2/A}

+ KiX", +K £sin 2/J{}1·
I'~ 1

Now

I
~ . 2 I IcoSO-COS(2V+ 1) 01 I
1.., sm /10 = <-~

I' ~ 1 2 sin 0 sin [;

is bounded for f. ~ () ~ n - f: and all v E N. and

lim IKiX",+KI =0
K-- .y_

holds since L ~= I iX", + v is convergent. Furthermore,

K-l K-I

L IViX»I+v-(v+l)iX»I+v+II~ I V!iXm+v-iXm+v+11
v=l v=l

K-I

+ I /iXrn+v+ II.
v=l

where

K-l x

lim I liXrn+v+ll = I liXrn+v+11 < I.
K-'Xv=1 v=1

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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For the first term in the right side of (57), it follows from (28) that

[(-I

lim L I' liX",+ I' -iX",+ 1'+ II
K-x v=)

= lim (_Kf'iXI>l+\,+(K-l)iXI>l+K)
K ......... ,x· v=l "

299

~ - lim
K ........ x

[(--I

L 'X m + v ~ 1~
1.'=1

(59)

and the proof is complete,

Proof of Corollary 3, For the proof of (9) and (10) note that

where dvd( Y I' .n, Yd[ f] = L: = I b,f( y.,) is the divided difference defined
by

which leads to

v = 0, I, ..., k - 2,

v=k-l,
(61 )

k

b v = Il (Y v - Yil) - I.

11= 1
Jl #- v

(62)

Therefore, the weights of Gauss-Kronrod quadrature formulae can be
written as

v= 1, ... ,11,

fA. = 1, ..., n + I.

(63)

(64)

It is known (cf e.g. Gatteschi [7] for a stronger result) that for
:<: II = cos rf~ II we have uniformly for e ~ rf~: II ~ 7r. - e, E: fixed, that

G v+(Je-l)/2+0(1)
¢" + 1 - v. n = + 1 -- i[n I.

(65)
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and (cf. [26, §15.3])
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(J 7[. 2A (;
Uv 11 =--1 SIn <P,,) 1+ 0(1 )),, n+A '

(66)

Furthermore, it follows from (31) and (49) that

, ') (' T(A+I/2) , I'~" . 1 A'

( -I )/- I piA '(x' ) = nAn '-2 ...· SIn ... - rl.v (J + o( J ))' (67)
11 v, II F(2A) If'v,1I

for X~~1I=cos<P~1I' f;~<p~1I~n-E;, Using now part (i) of the Theorem
and (65) for an asymptotic representation of £1I+l(X~1I' wAl, (31) and
Corollary J for an asymptotic representation of p;/, \ c;:. II + I) as well as
part (ii) of the Theorem and Corollary I for an asymptotic representation
of £;, + I (2;:' 11 + I' w)), we obtain from (63) respectively (64) that

A GK = n sin2A rl.G (1 +0(1))
v, fI 2n + I + A If'v, 11 ,

GK n, 2,l K
BI, I! + I = 2 I ,SIn 01, fI + 1(1 + 0(1 )), n+ +A '

hold uniformly for f; ~ <P;~ fI + I ~ n - f; and f; ~ 0:;' 11 + 1 .::; n - f:, l: fixed,

(68)

(69)

Proof of Corollary 4, Let f. E (0, J) be fixed and let II; = [ - J, - I + f.]

U [I - e, I]; let X~~1I = cos <P~1I and c;l~1I+ 1 = cos 0:;'11 + I' Then

Var(QGK ')= " (A GK )2+ " (B GK )2
2n + I . ~ v, fl ~ Ii, n + I

(i I'K
XI', lit- 1/; "'J~. 11+ I f: I,

(70)

We deduce from Corollary 3 that there hold uniformly

" (A GK)2 + " (BGK )2L, v, I! L.. 1/,11+1

.<: fl 1- IF: .;; n + I t If.

_ n (" GK( I _ [G 2,l
- 2n + I +). c'-' A v, 11 X v, 11] )

XI'. "t/; [I:

+,1; L B~'~+I(1-[!;:;'1I+1]2)';) (1 +0(1))
;;'11, n + I fi 1/;

n GK
2n+I+A Q211+ILf](1+0(1)), (71)
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X E Jr ,

(72)

Since f is bounded and Riemann integrable, it follows from the positivity
of QZ~+ I and from deg( QZ~+ I ) ~ 3n + 1 that (d. e.g. Davis and Rabinowitz
[2, pp. 129/130])

where

_ ;;;:F(2),+1/2) 'II)

- V It F( 2", + 1) + b, '

f
-I +,

16~J II :,; 2 ' (1 - x 2 ) - Ji2 dx = 2n - 2 arccos( - 1 + €).
-1

(73)

(74)

Let now m = (deg( QZ~+ J) + I )/2, and let Q~:' be the Gaussian formula with
respect to W ic ' Let NEN be defined by -1 +€E(X~'_Lm,x~.. "J. Let,
for notational convenience, x~:~_ 1.211 + I = ~~ 11 + J' a~~"- 1.211 + I = B~:'~ + l'

V = I, ... , n + I, X~,K211+1= -<:'11' a~~~211 + I = A~.:~, v = 1, ... ,11. Using a result of
Forster [4, Theorem 2.IJ, it follows that

N ( 2CK 0 CK

G"L (a":211+1)-:';2 ,,~o ,G <,(;f(L <.G al~211+1)
,- I'. 2n + I E h .\ 1, fir ---c: " 1'. 2n + I ~ .X" + I, m

N"C G 0:';21... (a,:",+av+J.,,,)"·
v=(}

(75)

From a result of Forster and Petras [6, Theorem 1] we obtain that this is
bounded by

tIl + 1

8 L (a;:'"f
v=l

Using [6, Corollary 1] we obtain

N+I 8 N+l
" con " C . 2' }G8 1... (a: m)' :( --v 1... a v' ", SIn " { v ",'
v~l' m+I'v=l' ,

(76)

(77)
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where x~,~ m = cos ()~~ m' Using the same argument as above, we obtain that

lim sup (2/1 + I)
11--+ X

CK ,32n
(a' )~~-(n-arccos(-I+E))v. 2n + 1 -.....;::: 3 ~ - . (78 )

Since the arccos function is continuous, it follows that the right hand sides
of (74) and (78) can be made arbitrarily smaIl by suitable choice of G,

which leads to the result
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